Predicting allergenic proteins using wavelet transform
نویسندگان
چکیده
MOTIVATION With many transgenic proteins introduced today, the ability to predict their potential allergenicity has become an important issue. Previous studies were based on either sequence similarity or the protein motifs identified from known allergen databases. The similarity-based approaches, although being able to produce high recalls, usually have low prediction precisions. Previous motif-based approaches have been shown to be able to improve the precisions on cross-validation experiments. In this study, a system that combines the advantages of similarity-based and motif-based prediction is described. RESULTS The new prediction system uses a clustering algorithm that groups the known allergenic proteins into clusters. Proteins within each cluster are assumed to carry one or more common motifs. After a multiple sequence alignment, proteins in each cluster go through a wavelet analysis program whereby conserved motifs will be identified. A hidden Markov model (HMM) profile will then be prepared for each identified motif. The allergens that do not appear to carry detectable allergen motifs will be saved in a small database. The allergenicity of an unknown protein may be predicted by comparing it against the HMM profiles, and, if no matching profiles are found, against the small allergen database by BLASTP. Over 70% of recall and over 90% of precision were observed using cross-validation experiments. Using the entire Swiss-Prot as the query, we predicted about 2000 potential allergens. AVAILABILITY The software is available upon request from the authors.
منابع مشابه
Short term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks and ARIMA (Case study of price index of Tehran Stock Exchange)
The goal of this research is to predict total stock market index of Tehran Stock Exchange, using the compound method of ARIMA and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. First, the series of price index was decomposed by wavelet transform, then the smooth's series predicted by using...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملEvaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)
In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...
متن کاملThe Efficiency of Hybrid BNN-DWT for Predicting the Construction and Demolition Waste Concrete Strength
The current study focuses on two main goals. First, with the use of construction and demolition (C&D) of building materials, a new aggregate was produced and it was utilized for green concrete production. The compressive strength test confirmed the good function of C&DW aggregate concrete. This concrete did not show significant differences with natural sand concrete. Second, Backpropagation neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 20 16 شماره
صفحات -
تاریخ انتشار 2004